ВИРТУАЛЬНАЯ СИСТЕМА И МЕТОД ИССЛЕДОВАНИЯ ОПТИЧЕСКИХ СВОЙСТВ СЛАБОМУТНЫХ СРЕД

С.П. Пронин, Е.С. Кононова, П.И. Госьков, А.А. Вдовин

Алтайский государственный технический университет им. И.И. Ползунова г. Барнаул

Среди светорассеивающих веществ существует обширная группа, представители которой рассеивают свет в относительно малой степени. К этой группе веществ относятся, например, окружающий нас воздух, вода, а из твердых тел — кристаллы, оптическое стекло, прозрачная пластмасса. Эти вещества называют слабомутными [1].

К числу измеряемых оптических свойств слабомутных веществ относятся показатель ослабления μ и показатель рассеяния a в заданном направлении. Для измерения оптических свойств используют колориметры, турбидиметры, нефелометры [1].

Если оптические свойства веществ не меняются, или меняются слабо, то в измерениях используют один какой-либо прибор. Если оптические свойства меняются, то использование одного прибора может оказаться недостаточным для точного измерения оптических свойств вещества. К веществам с изменяющимися оптическими свойствами относятся, например, среды с размножающимися бактериями, жидкие среды в состоянии полимеризации, воздушная среда с возрастающей концентрацией аэрозоли.

Целью исследовательской работы является создание метода и средства, способных обеспечить точные измерения в широком диапазоне изменения показателя ослабления.

Как известно, показатель ослабления μ вещества состоит из двух частей: показателя поглощения a и показателя рассеяния -r:

$$\mu = a + r \,. \tag{1}$$

Если среда не рассеивает световой поток, то показатель рассеяния r=0. В этом случае свойства среды оценивают по оптической плотности D с помощью колориметра фотометрического, например, КФК-3:

$$D = \lg(1/\tau) = ax$$
, (2)

где τ – коэффициент пропускания среды; x – толщина слоя среды с растворенным веществом.

При высоком показателе рассеяния указанные метод и средство дают высокую погрешность измерения показателя ослабления. Для повышения точности измерений применяют нефелометры. Измеряя интен-

сивность светового потока под различными углами, графически определяют компоненту рассеянного света и посредством этой компоненты вводят поправку на вычисление показателя ослабления [1].

Известно, что оптические свойства среды существенно влияют на контраст в изображении тест-объекта [2]. В работе [2] приведен метод измерения коэффициента ослабления по оптическому контрасту. Однако на сегодняшний день этот метод не получил широкого распространения. Вероятно, что в 60-х годах прошлого столетия уровень технического обеспечения просто не позволил развиться этому методу. Современные оптикоэлектронные приборы на основе ПЗСфотоприемников и персональные компьютеры способны с высокой производительностью и точностью обрабатывать оптические изображения. Проведенные авторами публикации [4] эксперименты выявили линейную зависимость между оптической плотностью среды и отрицательным значением логарифма контраста в изображении тест-объекта в виде двух светлых штрихов. В эксперименте использовались три оптические среды с различной концентрацией: раствор перманганата калия, аэрозоль и суспензия культуры Candida Albicans штамм 66 и жидкой питательной среды Для перманганата калия коэффициент корреляции составил 0.988 для 12 пар значений логарифма контраста и оптической плотности. Для аэрозоля коэффициент корреляции составил 0,986 для 12 пар, а для суспензии коэффициент корреляции составил 0,97 для 26 пар значений логарифма контраста и оптической плотности соответственно.

Основываясь на этих экспериментах, была предложена математическая модель зависимости контраста от оптической плотности среды в виде:

$$\lg K = \lg C_0 - \gamma \lg(1/\tau), \qquad (3)$$

где K – контраст в изображении двух штрихов;

 γ и C_0 — это коэффициенты линейного уравнения.

Для прозрачной среды коэффициент пропускания τ =1, поэтому второе слагаемое

ПОЛЗУНОВСКИЙ АЛЬМАНАХ №3 2007

ВИРТУАЛЬНАЯ СИСТЕМА И МЕТОД ИССЛЕДОВАНИЯ ОПТИЧЕСКИХ СВОЙСТВ СЛАБОМУТНЫХ СРЕД

в уравнении (3) обращается в нуль. Тогда из этого уравнения следует, что физически коэффициент C_0 определяет начальный контраст в изображении тест-объекта. В реальной действительности начальный контраст зависит от начального состояния среды без растворенных в ней веществ и качества оптико-электронного прибора [3].

Коэффициент γ можно интерпретировать следующим образом. Для прозрачных сред, когда величина показателя рассеяния стремится к нулю, величина показателя ослабления в формуле (1) будет стремиться к величине показателя поглощения. Тогда в уравнении (3) коэффициент γ должен принять значение γ = 1. Таким образом, коэффициент γ характеризует соотношение рассеивающих и поглощающих свойств среды, которое можно записать в виде математического выражения:

$$\gamma = (a + r) / a = \mu / a$$
 (4)

Действительно, при r=0, коэффициент $\gamma=1$. Тогда с учетом (2) и (4) из уравнения (3) можно получить формулу расчета показателя ослабления μ как основного параметра оптических свойств слабомутной среды:

$$\mu = \frac{1}{x} \cdot \lg \left(\frac{C_0}{K} \right). \tag{5}$$

Для экспериментальных исследований показателя ослабления были использованы видеокамера, персональный компьютер с разработанным программным обеспечением и пирамидальный растр, состоящий из ряда парных штрихов [3].

Обозначим начальный контраст в изображении пирамидального растра для і-ой пространственной частоты через $T(N_i)_0$, а контраст при измененных оптических свойствах среды – через $T(N_i)$.

Контраст в изображении пирамидального растра на соответствующей і-ой пространственной частоте рассчитывали по известной формуле:

$$T(N_i) = \frac{S_{max i} - S_{min i}}{S_{max i} + S_{min i}},$$
 (6)

где S_{maxi} — уровень сигнала в изображении светлого штриха:

 S_{mini} – уровень сигнала между двух штрихов.

Известно, что уменьшение мощности светового пучка прошедшего через среду определяется посредством десятичного показателя ослабления. Тогда по аналогии с изменением прошедшего светового потока изменение контраста можно записать в виде:

$$T(N_i) = T(N_i)_0 \cdot 10^{-\mu x}$$
, (7)

где μ = (a + r) - показатель ослабления;

а – десятичный показатель поглощения;

r – десятичный показатель рассеяния;

х – толщина среды.

После несложных математических преобразований из уравнения (7) можно выразить показатель ослабления:

$$\mu = \frac{1}{x} \lg(T(N_i)_0 / T(N_i)).$$
 (8)

Математическая формула (8) полностью совпадает с формулой (5), хотя ее вывод изначально не очевиден.

Поскольку показатель ослабления μ одновременно характеризует поглощающие и рассеивающие свойства среды, то формула (8) была применена для расчета изменения μ в двух жидких средах с различными оптическими свойствами. В качестве среды с малым показателем рассеяния были использованы растворы перманганата калия с различной концентрацией. В качестве среды с большим показателем рассеяния использованы суспензии с различной концентрацией дрожжей.

Выводы

Для среды с малым показателем рассеяния показатель ослабления μ на частотах N_1 =0,4 mm $^{-1}$, N_2 =1,11 mm $^{-1}$ возрастает с отрицательным знаком. Как показал анализ изменения сигнала в изображении штрихов, с повышением концентрации перманганата калия уровень сигнала в изображении светлых штрихов и уровень сигнала между светлыми штрихами уменьшаются на одинаковую величину. Ослабление светового потока происходит только за счет поглощения. На этих же пространственных частотах для среды с различной концентрацией дрожжей показатель поглощения возрастает с положительным знаком. Анализ сигнала в изображении пирамидального растра показал, что изменение уровней сигнала светлых штрихов и сигнала между этими штрихами уменьшаются неравнозначно. За счет рассеивания света сигнал между штрихами уменьшается слабее, чем сигнал в области светлых штрихов.

Список литературы

- 1. Гуревич М.М. Фотометрия / М.М. Гуревич Л.: Энергоатомиздат,1983.
- 2. Грин X. Аэрозоли пыли, дымы и туманы / X. Грин, В. Лейн Л.:Химия,1972.
- 3. Пронин С.П. Оценка качества информационноизмерительной оптико-электронной системы / С.П. Пронин – Барнаул: Изд-во АлтГТУ, 2001.
- Вдовин А.А., Пронин С.П. Зависимость контраста в изображении тест-объекта от оптических свойств среды // Материалы 9 Всеросс. НТК. – Нижний Новгород: МВВО АТН РФ, 2004. – С.2.